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4. Rationale:  
Systemic inflammation is a biological process that occurs with increasing age and as a result of 
clinical and subclinical disease, tissue injury, and social and environmental factors.1–3 Systemic 
inflammation has been causally implicated in age-related conditions, such as cardiovascular 
disease, and drugs targeting inflammatory protein expression have proven successful in reducing 
disease risk.4 Over the past three decades, observational and pharmaco-epidemiological has 
provided support for the relevance of systemic inflammation in the development of dementia, 
particularly dementia resulting from Alzheimer’s disease.5–8 Our group and others have 
demonstrated that individuals with high levels of inflammatory proteins in middle adulthood are 
at greater risk for cognitive decline,9 incident mild cognitive impairment,10 late-life atrophy in 
regions vulnerable to AD pathology,11,12 white matter dysfunction,13,14 and cerebrovascular 
disease.15,16 Consistent with these reports are studies which show that individuals who take anti-
inflammatory drugs (e.g., NSAIDS and TNF-alpha blockers) for extended periods during midlife 
are at reduced risk for developing dementia.8,17,18 In spite of these findings, clinical trials 
conducted on prodromal and early AD patients to reduce dementia risk using anti-inflammatory 
(NSAIDS, aspirin, and steroids) have been negative.19–21 The above findings highlight a potential 
role for inflammation in AD, but underscore the need for additional insights regarding the role of 
timing, disease stage, and the diversity of relevant molecular pathways. 
 Few studies have used a data-driven approach to identify biologically-relevant networks of 
inflammatory proteins, and even fewer have examined how these protein networks relate to 
dementia risk.1,22–24 We hypothesize that multiple networks of highly connected inflammatory 
proteins exist, each network with one or more unique hub protein(s), upstream regulator(s), and 
cell-type(s) of origin (monocytes, Th1/Th17 lymphocytes). We propose to conduct an in-depth 
characterization of the role of systemic inflammation in dementia risk. As part of this analysis, 
we will use protein measurements from ARIC visit 3 and visit 5 SomaScan v.4 platforms to 
identify networks of inflammatory proteins, henceforth referred to as inflammatory protein 
networks (IPNs). We will relate quantitative measures of IPN expression to dementia risk and 
cognitive decline, and determine the replicability of these IPNs in external cohorts with similar 
SomaScan proteomic measurements. To determine whether dementia-associated IPNs are 
causally implicated in AD risk or the emergence of AD endophenotypes (e.g, CSF/PET amyloid 
and tau levels) we will use a two-sample Mendelian randomization or polygenic risk score 
approach to determine the genetic overlap between protein quantitative trait loci for IPN 
expression and traits of interest (e.g., AD and AD biomarkers). In addition, we will use publicly 
available gene expression databases (e.g., GTEx) to determine the tissue(s) and immune cells 
most strongly enriched for IPN pQTLs. 

The current analyses build on the results of our recent manuscript “Large-scale plasma 
proteomic analysis identifies proteins and pathways associated with dementia risk,” which 
identified the plasma proteomic signature associated with subsequent dementia risk in older 
adults within the ARIC cohort (currently under review). Pathway analysis conducted as part of 
this study strongly implicated inflammatory and innate immune pathways and Mendelian 
randomization analyses causally implicated two dementia-associated proteins known to regulate 
aspects of immune function and inflammatory signaling. For the purpose of this analysis, we 
have preliminary data that identifies multiple IPNs at visit 5, one of which has been associated 
with dementia risk. The analyses outlined in this proposal represent a primary aim of Keenan 
Walker’s funded K23 award associated with Ancillary Study 2018.21.  
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5. Main Hypothesis/Study Questions: 
 
Objective 1. Using approximately 600 inflammatory plasma proteins measured using the 
SomaScan platform, identify midlife and late-life inflammatory protein networks (IPN) using 
weighted correlation network analysis (WGCNA) and Netboost dimension reduction. 

H1a. Three to five modules of inflammatory proteins (IPNs) will be identifiable during 
midlife (visit 3) and late-life (visit 5). 
H1b. Identified IPNs will be enriched for immunologically-relevant biological pathways. 
 

Objective 2. Determine whether expression of specific plasma IPNs during midlife and late-life 
is associated with dementia risk and cognitive decline.  

H2a. At midlife and late-life, one or more IPNs representing pro-inflammatory signaling are 
associated with dementia risk and cognitive decline.  
H2b. Hub proteins (i.e., proteins with high IPN module membership) identified in 
dementia-associated IPNs are themselves associations with dementia risk and cognitive 
decline. 
H2c. Midlife and late-life dementia-associated IPNs and individual hub proteins are 
associated with MRI-defined markers of neurodegeneration and PET-defined cortical 
amyloid.  
 

Objective 3. Determine whether mid- to late-life change in midlife IPN expression is associated 
with subsequent dementia risk and cognitive decline. 

H3. Individuals who experience the greatest change in midlife IPN expression between 
midlife (visit 3) and late-life (visit 5) are at increased risk for dementia and cognitive 
decline. 
 

Objective 4. Determine the replicability of (1) midlife IPNs in the Whitehall II cohort and (2) 
late-life IPNs in the AGES-Reykjavik cohort.  

H4. Midlife IPNs are approximately replicable in Whitehall II (age: 33-55). Late-life IPNs 
are approximately replicable in AGES-Reykjavik (age: 76.2 [5.4]). IPNs associated with 
dementia risk in ARIC are related to adverse neurocognitive outcomes in Whitehall II and 
AGES-Reykjavik.  
 

Objective 5. Determine (a) whether dementia-associated IPN proteins overlap with the protein 
products of Alzheimer’s disease GWAS risk variants identified in the International Genomics of 
Alzheimer’s Project (IGAP), and (b) whether expression of dementia-associated IPN varies 
based on common AD risk variants. 

H5a. Dementia-associated IPNs identified during midlife are enriched for proteins regulated 
by Alzheimer’s disease genetic risk variants. 
H5b. Common AD risk variants on or near immunologically-relevant genes (e.g., CD33, 
CR1, and MS4A), relate to expression of dementia-associated IPNs during midlife. 
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Objective 6. Determine whether the genetic predisposition for greater dementia-associated IPN 
expression also influences AD risk and expression of AD endophenotypes (CSF and PET 
biomarkers) using a two-sample Mendelian randomization or polygenic risk score approach. 

H6. pQTLs for dementia-associated IPNs overlap with AD risk variants. This analysis will 
support a causal relationship between dementia-associated IPNs identified during midlife 
and Alzheimer’s disease. 

 
6. Design and analysis (study design, inclusion/exclusion, outcome and other variables of 
interest with specific reference to the time of their collection, summary of data analysis, 
and any anticipated methodologic limitations or challenges if present). 
 
Study design: 

 
Figure 1. Study design. (A, B) Plasma Inflammatory Protein Networks (IPNs) will be defined using 
Weighted Correlation Network Analysis (WGCNA) or Netboost algorithms from ~600 inflammatory 
proteins measured ARIC visit 3 and visit 5. IPNs will be functionally profiled and hub proteins for each 
network will be identified. Quantitative indicators of IPN expression will be related to dementia risk, 
cognitive decline, and neuroimaging characteristics. (C) Change in IPN expression between ARIC visits 3 
and 5 will be related to dementia risk after visit 5. (D) The reproducibility of plasma IPNs will be 
determined using external cohorts. (E) Protein quantitative trait loci (pQTLs) for IPN expression will be 
identified using GWAS. Genetic overlap between pQTLs and Alzheimer’s disease risk variants and 
variants coding for Alzheimer’s disease endophenotypes (CSF/PET Aß and tau) will be examined using a 
two-sample Mendelian randomization or polygenic risk score approach.  
 
Inclusion criteria: We will include all participants who (1) have SOMAscan protein 
measurements available from blood collected at visits 3 or 5. 
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Exclusion Criteria: We will exclude non-white and non-black participants and non-white 
participants in Washington Co. and Minnesota, participants missing the education level variable, 
and participants missing information needed to classify cognitive status (i.e., 
normal/MCI/dementia classification) after Visit 3. 
 
Exposure/independent variables: 
Proteomic measurement (exposure variables): Using plasma collected at ARIC visits 3 (1992-
95) and visit 5 (2011-13), proteins were measured using a Slow Off-rate Modified Aptamer 
(SOMAmer)-based capture array (SomaLogic, Inc, Boulder, Colorado). Using chemically 
modified nucleotides, this process transforms protein signals to a nucleotide signal quantifiable 
using relative florescence on microarrays. Previous work indicates a median intra- and inter-run 
coefficient of variation of approximately 5% and intra-class correlation coefficients of ~0.9.25–28 
Using the methods described below, inflammatory proteins will be grouped into modules or 
inflammatory protein networks (IPNs) based on protein-protein correlations.  
 
Primary outcome variables: 
Incident Dementia after visit 5: We will relate measures of visit 5 IPN expression to incident 
dementia occurring between visits 5 and 6 (2015-2017). We will use dementia cases measured 
through visit 7, if the data are available. Dementia will be defined using both the information 
from the full visit 6 examination with expert committee diagnosis and information captured in 
annual follow-up (AFU) interviews using the Six Item Screener (SIS) and the Ascertain 
Dementia 8-item Informant Questionnaire (AD8). Date of dementia onset will be captured using 
the SIS and AD8, and dementia diagnosis will be confirmed at visit 6 for those who attend visit 
6. For participants who attended visit 5, but not visit 6, the SIS, AD8, hospital discharge codes, 
and death certificates will be used to define dementia diagnosis and date of onset. 
 
Incident Dementia after visit 3: We will relate measures of visit 3 IPN expression to incident 
dementia occurring through visit 5. Dementia occurring through visit 5 was ascertained at three 
levels. Consistent with the dementia classification after visit 5 (above), the proposed analysis 
will use dementia classified in person (level 1), using telephone interview (level 2), and using 
ICD-9 hospital discharge codes and death certificates (level 3). As a sensitivity analysis, visit 3 
IPNs found to be associated with dementia occurring through visit 5 may also be related to 
dementia occurring through visit 6 or 7. 
 
Secondary outcomes: 
Cognitive Decline: We will also relate measures of visit 5 IPN expression to 10-year cognitive 
decline between visits 5 and 7 using the global factor score. We will relate measures of visit 3 
IPN expression to 20-year cognitive decline between visits 3 and 5 using the global factor score. 
As a sensitivity analysis, visit 3 IPNs found to be associated with 20-year cognitive decline may 
also be related to 30-year cognitive decline between visits 3 and 7.  
 
Total and Regional Brain Volume. 3T MRIs were conducted in approximately 2,000 participants 
at visit 5 as part of the ARIC Neurocognitive Study (NCS). At each ARIC site, a common set of 
sequences were performed for all participants: MP-RAGE, Axial T2*GRE, Axial T2 FLAIR, 
and Axial DTI. Acquisition sequences for the ARIC visit 5 MRI have been described in detail 
previously.29 We will relate measures of visit 3 and visit 5 IPN expression to total and regional 
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brain volumes. We are particularly interested in total brain volume, lobar volume (frontal, 
temporal, parietal, occipital), and AD signature region volume (i.e., the combined volume of the 
parahippocampal, entorhinal, inferior parietal lobules, hippocampus, and pre- cuneus) for the 
current study. 
 
White Matter Hyperintensity (WMH) Volume. We will also relate measures of visit 3 and visit 5 
IPN expression to WMH volume. WMH volume (mm3) was be assessed quantitatively from 
FLAIR images using a computer-aided segmentation program (FLAIR-histoseg) to assess the 
total volumetric burden.30 All analyses of WMH volume and total and regional brain volume will 
be adjusted for total intracranial volume. 
 
Amyloid Status: Using data from participants enrolled in the ARIC-PET study, we will examine 
the association of midlife and late-life IPN levels with cortical amyloid, as defined using 
florbetapir PET. Cortical amyloid status will be examined as a dichotomous variable 
(standardized uptake value ratio >1.2) and a continuous variable.  
 
Analytic Plan 
 
Objective 1. Identify biologically meaningful midlife and late-life inflammatory protein 
networks (IPN) using weighted correlation network analysis (WGCNA) and Netboost. 
 
Weighted correlation network analysis (WGCNA) and Netboost. WGCNA and Netboost will be 
used to identify networks of correlated proteins within the set of approximately 600 
inflammatory proteins using the full set of participants with available SomaScan proteins at visits 
3 and 5. WGCNA and Netboost convert the protein-protein correlation matrix into an adjacency 
matrix that filters weak correlations based on a power threshold chosen to meet scale-free 
topology criteria. These algorithms use hierarchical cluster analyses and dynamic tree cutting 
implemented to group proteins based on patterns of coexpression. After modules are identified, 
module expression values (module eigenproteins [MEs]) are calculated from the first principal 
component of each module for each participant. These values represent measures of IPN 
expression that can be related to participant traits and outcomes. Module membership (kME), 
defined as the correlation between individual proteins within a module and the module 
eigenprotein value, will be used to identify IPN hub proteins. For all analyses, we will check for 
consistency between WGCNA and Netboost methods. 
 
Functional profiling. To determine the biological relevance of each IPN, we will determine 
whether IPNs are enriched with proteins from specific biological pathways using the g:Profiler 
toolkit.31 Using g:Profiler, we will query Gene Ontology (GO),32,33 Kyoto Encyclopedia of 
Genes and Genomes (KEGG),34 and WikiPathways35 functional enrichment databases. 
Additionally, Ingenuity Pathway Analysis (IPA) will be used to identify upstream regulators 
associated with each IPN.  
 
We have conducted preliminary analyses which have identified four IPNs using a set of 580 
inflammatory proteins measured at visit 5 (see Appendix 1 at the end of this proposal). Each 
module consists of approximately 40 to 70 unique proteins. Functional profiling of these IPNs 
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confirms their role in inflammation/immune function, but also highlights biological differences 
among modules. 
 

 
Objective 2. Determine whether expression of plasma IPNs during midlife and late-life is 
associated with dementia risk and cognitive decline.  
 
Relating IPNs to incident dementia. The primary analysis will use Cox proportional hazard 
regression models to examine the association of each IPN ME with incident dementia. Separate 
models will be constructed for each IPN ME, although we will also consider a model that 
includes all individual IPN MEs. We will use multiple models to examine the effect of potential 
confounders. Model 1 will adjust for potentially confounding demographic variables, including 
age at sample acquisition, sex, race-study center, education, and APOE ε4 status. Model 2 will 
additionally adjust models for eGFR, given the known association of plasma protein level with 

Figure 2. Three inflammatory protein networks (IPNs) identified among 580 visit 5 
inflammatory proteins using weighted correlation network analysis (WGCNA). Functional 
enrichment of IPNs was assessed using KEGG, Reactome, and WikiPathway databases. The 
size of nodes (protein names) represents module membership. The shading of the edges 
represents degree of protein-protein connectedness (adjacency). 
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kidney function. Model 3 will additionally adjust for cardiovascular risk factors (i.e., BMI, 
hypertension, diabetes, and current smoking) and anti-inflammatory medication use. If dementia-
associated IPNs are identified, we will examine the association of dementia-associated IPN hub 
proteins with dementia risk. Hub proteins will be defined based on protein-specific module 
membership (e.g., kME >0.8). For hub protein analyses, FDR or Bonferroni correction will be 
applied to determine statistical significance.  
 
Relating IPNs to cognitive decline. Secondary analyses will examine the association of IPN MEs 
with cognitive decline using linear mixed effect models with an unstructured covariance matrix. 
An ME*time term will be the variable of interest. The three covariate-adjusted models described 
above will be used for this analysis with addition time*covariate terms. Sensitivity analyses 
using MICE (Multivariate Imputation by Chained Equations) will be used for analyses of 
cognitive decline. 
 
Relating IPNs to neuroimaging variables. Secondary analyses will examine the association of 
IPN MEs with visit 5 MRI characteristics, including total brain, Alzheimer’s disease signature 
region, and white matter hyperintensity (WMH) volume. If sample size permits, additional 
exploratory analyses will examine the association of IPN MEs with total cortical florbetapir 
(amyloid) PET uptake (measured as standardized value uptake ratio [SUVR]). Multivariable 
linear regression will be used for these analyses with the set of covariates described above. Total 
intracranial volume will also be included as a covariate for MRI analyses. 
 
Objective 3. Determine whether mid- to late-life change in midlife IPN expression is 
associated with subsequent dementia risk and cognitive decline. 
 
This analysis will focus on the visit 3/midlife IPNs (IPNM). To calculate a mid- to late-life 
change in IPNM, we will construct synthetic IPNM’s  using visit 5 proteins. Thus, for each 
participant we will be able to calculate IPNM MEs at visits 3 and 5 and an IPNM change score 
(IPNM-Change = IPNM5- IPNM3). Thus, all participants who attended visits 3 and 5 will receive an 
IPNM-Change score for each IPNM. Using use Cox proportional hazard regression models, we will 
relate IPNM change scores to dementia risk after visit 5. IPNM-Change score scores may also be 
related to cognitive decline. The three covariate-adjusted models described above will be used 
for this analysis.  
 
Objective 4. Determine the replicability of midlife and late-life IPNs.  
 
Examination of network preservation across cohorts. We will use WGCNA and Netboost 
network module preservation statistics to assess the conservation of IPNs across different 
cohorts. We will use one or more of several techniques for evaluating module conservation, 
which have been described previously.36 Visit 5 IPNs defined in ARIC will be compared to IPNs 
defined in AGES-Reykjavik. The AGES-Reykjavik cohort has implemented a custom-designed 
Novartis SomaScan 5K platform which measures 5,034 SOMAmers representing 4,137 distinct 
human proteins. At the time of protein measurement, average participant age was 76 (SD 5), 
comparable to that of visit 5 ARIC participants (age: 75 [SD 5]). Visit 3 IPNs defined in ARIC 
will be compared to IPNs defined in Whitehall II. The Whitehall II study measured proteins in 
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plasma using SomaScan v.4. At the time of protein measurement, participants ranged in age from 
33 to 55, an age range that is similar to that of ARIC participants at visit 3 (age: 58 [SD 5]).  
 
Relating validated networks to dementia risk and cognitive decline. If there is evidence for a 
preservation of IPNs in external cohorts, we will (1) relate AGES-Reykjavik IPNs to dementia 
risk in the AGES-Reykjavik cohort and (2) relate Whitehall II IPNs to cognitive decline in the 
Whitehall II cohort. Cognition, rather than dementia, will likely be used as the primary outcome 
for Whitehall II because of the relatively low number of incident dementia cases. 
 
Objective 5. Determine (a) whether dementia-associated IPN proteins overlap with the protein 
products of Alzheimer’s disease GWAS risk variants identified in the International Genomics 
of Alzheimer’s Project (IGAP), and (b) whether expression of dementia-associated IPNs varies 
based on common AD risk variants. 
 
Examining whether proteins making up dementia-associated IPNs are enriched for proteins 
coded by AD risk genes. We will use AD risk single nucleotide polymorphism summary statistics 
from the International Genomics of Alzheimer’s Project (IGAP). Variant-gene mapping has been 
conducted previously using MAGMA (Multi-marker Analysis of GenoMic Annotation).37 
Statistical analysis of protein overlap between dementia-associated IPN proteins and protein 
products of AD risk variants will be conducted using a program such as GENOVA (GENe 
Overlap Analysis).  
 
Determining whether AD risk variants are associated with expression of dementia-associated 
IPNs. Twenty-one of the 29 identified Alzheimer’s disease risk variants are known to be 
immunologically relevant (Figure 2) and thus may represent regulators of peripheral 
inflammatory protein level.38 We suspect that AD risk variants will influence IPN expression 
during middle adulthood, well before the typical age of dementia onset. To test this hypothesis, 
we will determine whether possession of the risk genotype for immunologically-relevant AD risk 
genes is associated with IPN expression. We will use linear regression, adjusted for age, sex, 
study site, and genome-wide association studies (GWAS) principal components.  

 

 
 
Objective 6. Determine whether the genetic predisposition for greater dementia-associated IPN 
expression also influences AD risk and expression of AD endophenotypes (CSF and PET 
biomarkers) using a two-sample Mendelian randomization or polygenic risk score approach. 

Figure 3. Twenty-nine Alzheimer’s disease risk variants and their functionally annotated biological 
pathways. These results were derived from a multi-method variant-gene and gene-pathway mapping 
conducted by Tesi and colleagues. Figure adapted from Tesi et al., 2019. 
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We will conduct genome-wide association studies (GWAS) to identify cis- and trans genetic 
variants associated with level of IPN expression (i.e., IPN protein quantitative trait loci 
[pQTLs]). Using identified IPN pQTLs, we will use a two-sample Mendelian randomization 
approach to estimate the potential causal relationships between IPN expression and Alzheimer’s 
disease. Alternatively, we will consider a polygenic risk score approach. 
 
Mendelian randomization analysis. As displayed in Figure 3, we will use identified pQTLs for 
dementia-associated IPNs as instrumental variables to estimate the causal relation of dementia-
associated IPNs with Alzheimer’s disease risk and the expression of Alzheimer’s disease 
biomarkers.39 For Mendelian randomization analyses of Alzheimer’s disease and Alzheimer’s 
disease biomarkers (e.g., amyloid, total and p-tau) we will use publicly available GWA data from 
recent Alzheimer’s disease GWAS studies.40,41 By working with collaborators (e.g., EMIF-
Oxford investigators) who have previously conducted GWAS on other biomarkers, including 
CSF YKL-40 and NfL, we will also be able to determine whether IPN expression overlaps 
genetically with CSF-defined neuroinflammation and neurodegeneration. Mendelian 
randomization analyses will 
estimate causal effects using the 
inverse variance weighted 
method.42 We will also use 
Mendelian Randomization 
Pleiotropy RESidual Sum and 
Outlier (MR-PRESSO) to exclude 
potential outliers with 
pleiotropic effects. Median 
weighted and Egger regression 
methods will also be applied in sensitivity analyses. 43,44  
 
Polygenic risk score (PRS) analysis. Using summary statistics from the dementia-associated IPN 
GWAS, we will use the PRSice pipeline to create a PRS for plasma IPN expression. PRSice will 
clump SNPs to eliminate bias related to linkage disequilibrium, after which weighting will be 
applied IPN-related variants. We will examine multiple p-value thresholds (ranging from 
P<5.0x10-8 to P<5.0x10-5. Using external GWAS summary statistics for AD and AD 
endophenotypes, we will calculate the estimated effects for groups of IPN-associated variants. 
 
Genotyping and imputation. Imputation has been previously conducted in ARIC using Human 
Reference Panel [HRC] for white participants and 1000G phase 3v5 for black participants. The 
Illumina Infinium HumanExome BeadChip v1.0 array exome chip was used to identify variants 
across the genome, with a focus on protein-coding variants and splice sites.45  
 
Genetic association analysis overview. We will identify common (minor allele frequency [MAF] 
≥ 5%) variants associated with IPN expression (ME) using race-stratified linear regression 
adjusting for age, sex, study site, and GWAS principal components. For Mendelian 
randomization, pQTLs will be identified at genome-wide significance (two-sided P-value <5 x 
10-8) and LD pruned (R2>0.8).46  
 

Figure 4. Conceptualization of Mendelian randomization model 
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Tissue and Cell Enrichment Analysis. Using publicly available gene expression datasets (e.g., 
GTEx), we will also determine whether there is tissue- or cell-specific enrichment for dementia-
associated IPN pQTLs. This will be conducted using gene overlap analysis with a program such 
as SNPsea, GENOVA, or Bayesian test for colocalization.47–49 This analysis will allow us to 
determine whether dementia-associated plasma IPNs are likely to originate from specific tissues  
(e.g., adipose tissue, heart, spleen) or cell types (e.g., monocytes, Th1, or Th17 cells). 
 
Limitations. As in all omic analyses, the validity of measurement of different proteins varies 
across the large number of proteins. The discovery effort is focused on identifying and validating 
new proteomic networks and network-trait associations. Lack of sufficiently strong signal is not 
evidence of no association with a given protein since lack of signal may be due to limited power 
for a host of reasons including the need to be conservative when adjusting for multiple 
comparisons.  
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